SCRA Paper 3

Mathematics

SET - C

Mathematics Paper – III

- 1. In four throws of a fair die, what is the probability of getting a score of more than 4 at least once?
- (a) $\frac{65}{81}$
- (b) $\frac{80}{81}$
- (c) $\frac{7}{9}$
- (d) None of the above

For the next **03(three)** items that follow:

A die is rolled so that the probability of face m is proportional to m, where m = 1, 2, 3, 4, 5, 6.

- 2. What is the proportionality constant?

- (b) $\frac{1}{14}$ (c) $\frac{1}{21}$
- 3. What is the probability of getting a even number?
- (a)

- 4. What is the probability of getting a multiple of 3?
- (a) $\frac{3}{7}$
- (b) $\frac{2}{21}$
- (c) $\frac{2}{3}$
- (d) None of the above
- 5. The probability of a shooter hitting a target is $\frac{2}{3}$. What is the minimum number of times that the shooter must fire so that

the probability of hitting the target at least once is more than 0.99?

- (a) 4
- (c) 6
- (d) None of the above
- 6. Consider the following statements about the random variables X and Y on the same sample space S:

1.
$$(X + Y)(s) = X(s) + Y(s)$$

$$2. \quad (XY)(s) = X(s)Y(s)$$

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 2 and 2 (d) Neither 1 nor 2
- Consider the following statements:
- 1. Area under a histogram gives total frequency.
- 2. Width of the tallest vertical bar of the histogram gives modal class.

Which of the above statements is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 8. Consider the following statements related to measure of central tendency of 50 positive numbers :
- 1. The median is not influenced by extreme values in the set of numbers.
- 2. The harmonic mean is unreliable if one or more of the numbers is near zero.

Which of the above statements is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 9. A fair coin is tossed 6 times; call heads a success. This is a binomial experiment with n = 6 and $p = q = \frac{1}{2}$. What is the probability of getting at least 4 heads?
- (a) $\frac{1}{2}$
- (b) 1
- (c) $\frac{11}{32}$
- (d) None of the above
- 10. If *A* and *B* are two events such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$, $P(not \ A) = \frac{2}{3}$ then what is P(B) equal to ?
- (a) $\frac{1}{3}$ (b) $\frac{2}{3}$
- (c) $\frac{1}{9}$ (d) $\frac{2}{9}$
- 11. Consider the following statements:
- 1. $\frac{1}{1-\sin A} > 2\sin A + \frac{1}{1+\sin A}$
- $2. \ \frac{1}{1 + \cos A} \le 2 \frac{1}{1 \cos A}$

Where $0^0 < A < 90^0$

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 12. Consider the following statements:
- 1. If $0 < \tan A < 1$, then

$$\frac{1}{1 - \tan A} + \frac{\cot A}{\cot A - 1} = \frac{\cot A}{\cot A + 1} + \frac{1}{1 + \tan A}$$

2. If tan A > 1, then

$$\frac{1}{1-\tan A} + \frac{1}{1+\tan A} < 0$$

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

For the next **02** (two) items that follow:

Consider $S = \sum_{r=2}^{n} \sin(r\alpha)$

- 13. What is S if $(n+2)\alpha = 2\pi$?
- (a) 0 (b) 1
- (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{1}{2}$
- 14. What is S of $(n-1)\alpha = 2\pi$?
- (a) 2 (b) 1
- (c) $\frac{1}{2}$ (d) 0

For the next **02** (**two**) items that follow:

Consider $\sin 5\theta = 5 \sin \theta - 20 \sin^3 \theta + k \sin^5 \theta$

- 15. What is the value of k?
- (a) 5
- (b) 11
- (c) 16
- (d) -16
- 16. What is

 $40 \sin^3 \theta - 32 \sin^5 \theta - 10 \sin \theta + 2 \sin 5\theta$ equal to?

- (a) 0 (b) 1
- (c) 2 (d) None of the above

For the next **02** (two) items that follow

Consider

$$f(x) = 2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2} \right), x > 1$$

- 17. What is f(x) equal to ?
- (a) $\sec^{-1} x$ (b) $\csc^{-1} x$
- (c) π (d) $\frac{\pi}{2}$
- 18. what is f(5) equal to?
- (a) 5π (b) π
- (c) $\frac{\pi}{2}$ (d) 2π

For the next **02** (two) items that follow:

Let
$$x = (\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta)(\cos 3\theta + i \sin 3\theta)$$

Where $\theta \in R$.

- 19. If z is real, then which one of the following is correct?
- (a) $\theta \in \left(\frac{k\pi}{3} : k \text{ is an integer}\right)$ $\cup \left\{\frac{(2r+1)\pi}{6} : r \text{ is an integer}\right\}$
- (b) $\theta \in \left\{\frac{k\pi}{3}: k \text{ is an integer}\right\}$ only
- (c) $\theta \in \left\{ \frac{k\pi}{2} : k \text{ is an integer} \right\}$
- (d) None of the above
- 20. If z is purely imaginary, then which one of the following is correct?
- (a) $\theta \in \left\{ \frac{(4k+1)\pi}{12} : k \text{ is an integer} \right\}$

- (b) $\theta \in \left\{ \frac{(2k+1)\pi}{12} : k \text{ is an integer} \right\}$
- (c) $\theta \in \left\{ \frac{k\pi}{12} : k \text{ is an integer} \right\}$
- (d) None of the above

For the next **02** (two) items that follow:

The pth, qth, rth terms of an HP are a, b, c respectively.

- 21. What is $\begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$ equal to ?
- (a) 0 (b) 1
- (c) abc (d) $(abc)^{-1}$
- 22. What is

$$b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}$$
 $pbc + qca + rab$ $bc + ca + ab$ $pbc + qca + rab$ $p^{2} + q^{2} + r^{2}$ $p + q + r$ $bc + ca + ab$ $p + q + r$ 3

Equal to?

- (a) $(abc)^{-2}$ (b) $(abc)^2$
- (c) 1 (d) 0

For the next **02** (two) items that follow:

Consider the system of equations

$$x + y + z = 1$$
$$x + 2y + 4z = k$$
$$x + 4y + 10z = k^{2}$$

- 23. What is /are the value (s) of k which make(s) the system of equations to possess the solution?
- (a) 0 (b) 1 or 2
- (c) 3 or 4 (d) None of the above

- 24. Consider the following statements:
- 1. The system of equations can have infinite solutions for some value of k.
- 2. The system of equations can have unique solution for some value of k.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 25. For what value (s) of $n \ge 1$, where n is a natural numebr, $A^n nA + nI = I$, where I is the identity matrix and $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$?
- (a) n = 1 only (b) n = 2 only
- (c) For all values of n
- (d) None of the values of n
- 26. Let A and B be two points on x-axis and y-axis respectively, O being the origin. If the equal sides OA and OB, each equal to a, are produced to P and Q respectively such that AP.BQ = OA.QB, then the line PQ always passes through the fixed point
- (a) $\left(\frac{a}{4}, \frac{a}{4}\right)$ (b) $\left(\frac{a}{3}, \frac{a}{3}\right)$
- (c) $\left(\frac{a}{2}, \frac{a}{2}\right)$ (d) (a, a)
- 27. The new position of the point (1, 2) under rotation through an angle of 90^{0} about the origin in anticlockwise direction is
- (a) (-2,1) (b) (2,-1)

- (c) (1,-2) (d) (-1,2)
- 28. What is the area of the triangle with vertices at (0,0,0), (2,0,0) and (0,-2,0)?
- (a) $\frac{1}{2}$ square unit
- (b) 1 square unit
- (c) 2 square units
- (d) 4 square units
- 29. Consider two circles

$$C_1 = x^2 + y^2 = a^2$$

$$C_2 = (x - \alpha)^2 + (y - \beta)^2 = b^2$$

With C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally. Then the locus of the centre of the circle C is

- (a) a circle of radius a b
- (b) a parabola of semilatus rectum a + b
- (c) an ellipse of major axis a + b
- (d) None of the above
- 30. The shortest distance of a point from the x-axis, y-axis and z-axis respectively are 2, 3, 6. What is the distance of the point from the origin?
- (a) $\frac{7}{\sqrt{2}}$ (b) 7
- (c) 11 (d) $\frac{49}{2}$

For the next **02** (two) items that follow:

Consider a plane parallel to x-axis and passing through the points (0,1,3) and (2,4,5).

- What are the direction ratios of normal to the plane?
- (a) (1,2,-3) (b) (4,-6,0)
- (c) (1,2,3)
- (d) None of the above
- 32. What is the equation to the plane?
- (a) 2y 3z + 7 = 0
- (b) x + 2y 3z + 5 = 0
- (c) 2y 3x + 9 = 0
- (d) None of the above

For the next **03** (three) items that follow:

Consider a unit cube.

- 33. What is the perpendicular distance of a corner to the diagonal not passing through that corner?
- (a) $\frac{2}{3}$ (b) $\frac{\sqrt{3}}{2}$
- (d) None of the above
- 34. What is the sum of squares of direction cosines of all the four diagonals of the cube?
- (b)
- (d) Cannot be determined as the data is inadequate
- 35. If θ is the acute angle between any two diagonals of the cube, then what is $\tan^2 \theta$ equal to?
- (a) 1 (b) 2
- (c) 4
- (d) None of the above

- 36. If $\underset{a}{\rightarrow}$, $\underset{b}{\rightarrow}$ are two vectors inclined at angle θ such that $\underset{a}{\rightarrow} +\underset{b}{\rightarrow}$ is a unit vector, then what is θ equal to?
- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{6}$ (d) $\frac{2\pi}{3}$
- 37. If $\underset{a}{\rightarrow}$ is a non-zero vector of magnitude a, then $m \rightarrow is$ a unit vector if
- (a) $m = \pm 1$ (b) a =
- (c) a = |m| (d) a = m

For the next **02** (two) items that follow:

The vectors \rightarrow , \rightarrow , \rightarrow are of same length and equally inclined to each other. Let $\underset{a}{\rightarrow} = i + j$ and $\underset{b}{\rightarrow} = j + k$.

- 38. What is the angle between \rightarrow and \rightarrow
- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{2}$
- 39. What can be the direction ratios of \rightarrow ?
- (a) (1,2,-3) (b) (-1,2,-1)
- (c) (-1, 4, -1) (d) None of the above
- 40. If A and B are two matrices such that AB = B and BA = A, then what is A(A-1) + B(B-1) equal to?
- (a) *AB*
- (b) 2*AB*
- (c) zero matrix (d) Identity matrix
- 41. If

$$I = \int \frac{e^{x} dx}{(1+x^{2})^{2}} , I_{2} = \int \frac{xe^{x} dx}{(1+x^{2})^{2}} , I_{3}$$
$$= \int \frac{x^{2}e^{x} dx}{(1+x^{2})^{2}}$$

Then what is $I_1 - 2I_2 + I_3$ equal to?

(a)
$$\frac{e^x}{1+x^2} + c$$
 (b) $\frac{e^x}{(1+x^2)^2} + c$

(c)
$$\frac{2e^x}{1+x^2} + c$$
 (d) None of the above

Where c is the constant of integration.

42. What is

$$\sum_{r=1}^{n} \int_{0}^{\pi/2} (r + \sin \theta)^{2} \cos \theta \ d\theta$$
equal to ?

- (a) $\frac{n(n^2+3n+3)}{3}$ (b) $\frac{n(n+1)(n+2)}{3}$
- (c) $\frac{n(n+1)(2n+1)}{3}$ (d) $\frac{(n+1)(n+2)}{3}$
- 43 What is $\lim_{x\to 1} \frac{\sqrt{1-\cos(2x-2)}}{x-1}$

Equal to?

- (a) $\sqrt{2}$ (b) $-\sqrt{2}$
- (c) 0 (d) Limit does not exist
- 44. If

$$I = \int_0^{\pi/2} \frac{\cos x \, dx}{1 + \cos x + \sin x}$$

Then what is

$$\int_0^{\pi/2} \frac{dx}{1 + \cos x + \sin x}$$

Equal to?

- (a) $\frac{1}{2}$ (b) *I*
- (c) $\frac{\pi}{2} 2I$ (d) None of the above
- 45. What is

$$\int_{-1}^{1} \frac{x dx}{x^4 + x^2 + 1}$$

Equal to ?

- (a) 0 (b)
- (c) 2 (d) None of the above
- 46. The differential equation

$$y \frac{dy}{dx} + x = a$$

Where α is a constant, represents

- (a) a set of circles having centre on the y-axis
- (b) a set of parabolas
- (c) a set of circles having centre on the x-axis
- (d) a set of straight lines
- 47. What is the degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^{2/3} + 4 - 3 \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} = 0?$$

- (a) 1 (b) 2
- (c) 3 (d) $\frac{2}{3}$
- 48. Consider the following statements:

1.
$$\int_0^a f(x)dx - \int_0^a f(a-x)dx = 0$$

2.
$$2 \int_0^{\pi} xf(\cos^2 x) dx - \pi \int_0^{\pi} f(\cos^2 x) dx = 0$$

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 49. The solution of the differential equation

$$y \left[2x \sec^2(y^2) \frac{dy}{dx} + y^3 \right] = \ln(x^2 e^{y^4})$$
 is

- (a) $\sec^3 y^2 = (\ln x)^2 + c$
- (b) $\sec^3 y^2 = 12 (\ln x) + c$
- (c) $\tan y^2 = (\ln x)^2 + c$
- (d) None of the above

Where c is an arbitrary constant.

50. What is

$$\lim_{x\to 0+} \left[\frac{1}{x^2}\right] \ln(\cos x)$$

Where [.] denotes the greatest integer function?

- (a) $-\frac{1}{2}$ (b) $-\frac{1}{3}$
- (c) 0 (d) Limit does not exist
- 51. If $I_1 = \int e^{2x} \sin\left(\frac{\pi}{3} x\right) \cos x \, dx$

$$I_2 = \int e^{2x} \cos\left(\frac{\pi}{3} - x\right) \sin x \, dx$$

Then what is $I_1 + I_2$ equal to

(a)
$$\frac{\sqrt{3}e^{2x}\sin x}{2} + c$$

(b)
$$\frac{e^{2x}\cos x}{2} + c$$

(c)
$$\frac{\sqrt{3}e^{2x}}{4} + c$$
 (d) $\frac{e^{2x}}{4} + c$

Where c is the constant of integration.

52. What is the general solution of the equation

$$\frac{dy}{dx} = \frac{3x - 4y + 1}{4x + 3y + 1}$$

(a)
$$(x+3y)(y-3x) + 2(y-x) = c$$

(b)
$$(x-3y)(y+3x) + 2(y-x) = c$$

(c)
$$(3y - x)(y + 3x) + y(y - x) = c$$

(d) None of the above

Where c is an arbitrary constant.

53. What is the equation of straight line parallel to the line 3x + 2y + 7 = 0 and which is such that the sum of its intercepts on the axes is 10?

(a)
$$3x + 2y - 12 = 0$$

(b)
$$3x + 2y + 10 = 0$$

(c)
$$2v + 3v - 12 = 0$$

(d)
$$2x - 3y - 12 = 0$$

54. A straight line through P(1,2) is such that its intercept between the axes is bisected at P. Its equation is

(a)
$$x + 2y = 4$$
 (b) $2x - y = 4$

(c)
$$2x + y = 4$$
 (d) $x - 2y = 4$

55. If the line y = mx meets the lines x + 2y - 1 = 0 and 2x - y + 3 = 0 at the same point, then m is equal to

$$(c) -2$$

$$(d) -1$$

For the next **02** (two) items that follow:

Consider the function

$$f(x) = \begin{cases} x & when \ x \text{ is rational} \\ 1 - x & when \ x \text{ is irrational} \end{cases}$$

On the interval $I = \{0, 1\}$.

- 56. The function is continuous at
- (a) $x = 0.5 \ only$
- (b) every point in I
- (c) every rational point in I
- (d) every irrational point in I
- 57. Consider the following statements:
- 1. f(x) has its own inverse in I.
- 2. f(x) is differentiable at x = 0.5

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 58. The function

$$f(x) = \frac{k \sin x + 2 \cos x}{\sin x + \cos x}$$

Is increasing for

- (a) k < 0 (b) 0 < k < 1
- (c) 1 < k < 2 (d) k > 2

For the next **02** (two) items that follow:

Consider the function

$$f(x) = (x-2)^3 (x-1)^2$$

- 59. Consider the following statements:
- 1. The function is neither increasing nor decreasing in the interval [1, 2].
- 2. The function has neither relative maximum nor relative minimum at x = 2.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 60. Consider the following statements:
- 1. The function attains relative maximum at x = 1.
- 2. The function attains relative minimum at $x = \frac{7}{5}$.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

For the next **02** (two) items that follow:

Consider

$$a_n = \int_0^\pi \frac{\sin(2n-1)x}{\sin x} \, dx$$

Where n is a natural number.

- 61. What is $a_{100} a_{99}$ equal to?
- (a) 0
- (b) 1
- (c) $\frac{\pi}{2}$
- (d) π

- 62. $a_1, a_2, a_3, \dots, a_n$ are
- (a) in AP only (b) in GP only
- (c) both in AP and GP
- (d) neither in AP nor in GP

For the next **02** (two) items that follow:

Let $f(x) = x - \ln|2x + 1|$ be defined for

$$x \in \left(-100, \frac{1}{2}\right) - \left\{-\frac{1}{2}\right\}$$

- 63. The function f(x) is monotonically decreasing in the interval
- (a) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(-100, -\frac{1}{2}\right)$
- (c) $\left(\frac{1}{2}, 100\right)$ (d) $\left(\frac{1}{2}, 1\right)$
- 64. The function f(x) is monotonically increasing in the interval
- (a) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(-\frac{1}{2}, 0\right)$
- (c) $\left(0, \frac{1}{2}\right)$ (d) $\left(-100, -\frac{1}{2}\right)$

For the next 02 (two) items that follow:

- Let $f(x) = (1-x)^n$, where n is a non –negative integer.
- 65. What is the coefficient of x^n in $(1-x)^n$?
- (a) n (b) -n
- (c) $(-1)^n$ (d) None of the above
- 66. What is

$$f(0) + f'(0) + \frac{f''(0)}{2!} + \dots + \frac{f^{n}(0)}{n!}$$

Equal to?

- (a) 2^n (b) 0
- (c) 1 (d) -1

For the next **02** (two) items that follow:

Consider the ellipses $4x^2 + y^2 = 1$ and $x^2 + 4y^2 = 1$.

- 67. What is the area common to both the ellipses?
- (a) tan⁻¹ 2 square units
- (b) $2 \tan^{-1} 2$ square units
- (c) 4 tan⁻¹ 2 square units
- (d) None of the above
- 68. What is the bounded area not common to both the ellipses?
- (a) $(\pi \tan^{-1} 2)$ square units
- (b) $(2\pi \tan^{-1} 2)$ square units
- (c) $(\pi 2 \tan^{-1} 2)$ square units
- (d) None of the above

For the next **02** (two) items that follow:

Consider the functions $f(x) = x^2$, g(x) = 2x + 1 and $h(x) = x - \frac{1}{2}$ on the interval I = [0, 1].

- 69. Consider the following statements:
- 1. The function (fg)(x) is always increasing on I.
- 2. The function (fh)(x) is always increasing on I.

Which of the statements given above is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 70. Consider the following statements:
- 1. The function (gh)(x) is always increasing on I.
- 2. The function (f + g)(x) is always increasing on I.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 71. Addition is not a binary operation on the set
- (a) N of natural numbers
- (b) $\{x : x \text{ is a real number and } |x| = 1\}$
- (c) Q of rational numbers
- (d) R of real numbers
- 72. The locus of the point of intersection of the straight lines

$$\frac{x}{a} + \frac{y}{b} = \lambda$$
 and $\frac{x}{a} - \frac{y}{b} = \frac{1}{\lambda}$

Where λ is a variable, is

- (a) a circle (b) a parabola
- (c) an ellipse (d) a hyperbola
- 73. If the product of n positive numbers is unity, then their sum is
- (a) a positive integer
- (b) divisible by n

- (c) equal to $(n^2 + 1)/n$
- (d) never less than n
- 74. The number of numbers between 1 and 10^{10} , which contain the digit 1, is
- (a) $10^{10} 9^{10} 1$
- (b) 9^{10} (c) $10^{10} 9^{10}$
- (d) None of the above
- 75. If a, b, c are any three consecutive terms in an AP, then the line ax + by = c = 0
- (a) has a fixed direction
- (b) passes through the origin $(c \neq 0)$
- (c) always passes through a fixed point
- (d) None of the above
- 76. A five –digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4, 5 without repetition. The total number of ways in which this can be done is
- (a) 216
- (b) 240
- (c) 600
- (d) 3125
- 77. If α, β are the roots of the equation

$$ax^2 + 3x + 2 = 0 \ (a < 0)$$

Then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is greater than

- (a) 1 (b) 2
- (c) 3 (d) None of the above
- 78. The number of terms in the expansion of $(2x + 3y 4z)^n$, which n is a positive integer, is

- (a) n+1 (b) (n+1)(n+2)/2
- (c) n(n+1)/2 (d) (n-1)(n-2)/2
- 79. If $\sin(x y)$, $\sin x$ and $\sin(x + y)$ are in HP, then $[\sin x \sec (y/2)]$ is equal to
- (a) $\pm \sqrt{2}$ (b) ± 1
- (c) ± 3 (d) ± 2
- 80. If $\tan A = \frac{1-\cos B}{\sin B}$

Then what is tan 2A equal to?

- (a) $\tan B$ (b) $\tan 2B$
- (c) $\sin B$ (d) $\cos B$
- 81. If an angle α is divided into two parts A and B such that

$$A - B = x$$
 and $\frac{\tan A}{\tan B} = k$

Then what is $\sin x$ equal to?

- (a) $\frac{k+1}{k-1}\sin\alpha$
- (b) $\frac{k+1}{(k-1)\sin\alpha}$
- $(c)\frac{k-1}{(k+1)\sin\alpha}$
- (d) $\frac{k-1}{k+1}\sin\alpha$
- 82. What is the sum of the first 30 terms of the series $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots$?
- (a) 21010 (b) 8920
- (c) 22100 (d) 9920
- 83. The total number of ways of selecting tow numbers from the set {1, 2,

- 3, ..., 30, so that their sum is divisible by 3, is
- (a) 95 (b) 145
- (c) 190 (d) None of the above
- 84. The sum of n terms of the series

$$1 + (1 + x) + (1 + x + x^{2})$$

$$= (1 + x + x^{2} + x^{3})$$

$$+ \cdots ...$$

Where x < 1, is

- (a) $\frac{1}{1-x}$ (b) $\frac{n}{1-x}$
- (c) $\frac{n}{1-x} \frac{n(1-x^n)}{(1-x)^2}$
- (d) $\frac{n}{1-x} \frac{n(1-x^{n+1})}{(1-x)^2}$
- 85. The 5th term from the end in the expansion of $\left(x \frac{1}{x}\right)^{3n}$ in increasing power of x, is [n] is a positive integer]
- (a) x^{8-3n} (b) x^{7-3n}
- (c) x^{3n-4} (d) None of the above
- 86. The function $f: R \to R$ defined by

$$f(x) = (x - a)(x - b)(x - c)$$

Where $a, b, c \in R$, is

- (a) not one –one but onto
- (b) one –one but not onto
- (c) both one –one and onto
- (d) neither one -one nor onto
- 87. If $A = \{1, 2, 3, 4\}$, then which of the following is/are the function(s) from A to itself?

I.
$$f_1 = \{(x, y) | x + y = 5\}$$

II.
$$f_2 = \{(x, y) | y < x \}$$

Select the correct answer using the code given below.

- (a) I only (b) II only
- (c) Both I and II (d) Neither I nor II
- 88. If $f: R \to R$ be given by

$$y = f(x) = (x + 1)^2 - 1$$

Then f(x) is invertible if

(a)
$$y \ge -1$$
 (b) $-2 \le y < -1$

- (c) $-3 \le y < -2$ (d) None of the above
- 89. The complex numbers z satisfying $z^2 + |z| = 0$ are

(a)
$$0, i - i$$
 (b) $0, 1, i, -i$

(c)
$$0, 1, -1, i, -i$$
 (d) $0, -1$

90. If z_1, z_2, z_3 are complex numbers such that

$$|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$$

Then what is $|z_1 + z_2 + z_3|$ equal to?

- (a) Less than 1
- (b) Lies between 1 and 3
- (c) 1 (d) 3
- 91. IF the lines x + 2ay + a = 0, x + 3by + b = 0 and x + 4cy + c = 0 are concurrent, then a, b, c are in
- (a) HP (b) AP
- (c) GP (d) None of the above

- 92. Let (α, β) , (β, γ) and (γ, α) be the roots of the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$, $x^2 + rx + pq = 0$ respectively. Then the product of their common roots $(\alpha\beta\gamma)$ is equal to
- (a) pqr (d) 2pqr
- (c) 2 pqr (d) $p^2q^2r^2$
- 93. The roots of the equation

$$qx^2 - px + (0.5 p - 0.25 q) = 0$$

When p < q, where p, q are real numbers, are always

- (a) irrational (b) real
- (c) complex (d) rational
- 94. If z is a complex number, then the common roots of the equations

$$z^{1985} + z^{100} + 1 = 0$$

$$z^3 + 2z^2 + 2z + 1 = 0$$
 are

- (a) ω , ω^2 (b) 1, ω , ω^2
- (c) $-1. \omega. \omega^2$ (d) $-\omega. -\omega^2$
- 95. The range of θ in the interval $(0, \pi)$ such that the points (3, 5) and $(\sin \theta, \cos \theta)$ lie on the same side of the line x + y 1 = 0, is
- (a) $(0, \pi/4)$ (b) $(0, \pi/2)$
- (c) $(\pi/2,\pi)$ (d) $(0,\pi)$
- 96. A line passing through the point (2, 2) encloses an area λ with the axes. The intercepts on the axes made by the line are given by the two roots of

(a)
$$x^2 + 2|\lambda|x + |\lambda| = 0$$

(b)
$$x^2 - 2|\lambda|x + |\lambda| = 0$$

(c)
$$x^2 + |\lambda|x + 2|\lambda| = 0$$

(d)
$$x^2 - |\lambda| x + 2|\lambda| = 0$$

- 97. The area bounded by the curve $y = 2x^4 x^2$, the *x*-axis and the two ordinates corresponding to minimal of the function is
- (a) $\frac{1}{40}$ square unit
- (b) $\frac{7}{120}$ square unit
- (c) $\frac{1}{24}$ squre unit
- (d) None of the above

98. If
$$a \le 3\cos x + 5\sin\left(x - \frac{\pi}{6}\right) \le b$$

Holds good for all x, then a and b are respectively

(a)
$$-4,4$$
 (b) $-\sqrt{19},\sqrt{19}$

(c)
$$-\sqrt{29}$$
, $\sqrt{29}$ (d) -8 , 8

99. In a triangle ABC

$$\sin A \sin B \sin C = \frac{3 + \sqrt{3}}{8}$$

$$\cos A \cos B \cos C = \frac{\sqrt{3} - 1}{8}$$

Then what is the value of $\tan a + \tan B + \tan C$?

(a)
$$\sqrt{3}\left(2-\sqrt{3}\right)$$

(b)
$$2 + \sqrt{3}$$

(c)
$$2 - \sqrt{3}$$

(d)
$$\sqrt{3}(2+\sqrt{3})$$

100. The graph of the function

$$y = \cos x \cos(x + 2) - \cos(x^2 + 1)$$
 is a

- (a) straight line passing through the point $(0, \sin^2 1)$ and parallel to x-axis
- (b) straight line passing through the origin
- (c) parabola with vertex $(0, \sin^2 1)$
- (d) None of the above

